FOLLOW US ON TWITTER
SHARE THIS PAGE ON FACEBOOK, TWITTER, WHATSAPP ... USING THE BUTTONS ON THE LEFT


YOUR PARTICIPATION FOR THE GROWTH OF PHYSICS REFERENCE BLOG

Monday, February 11, 2013

Complex Analysis: #16 Residues Calculus

  • Complex Analysis: #16 The Calculus of Residues

Let’s begin by thinking about a function f with a pole of order m at the point a ∈ ℂ. That is, in a sufficiently small neighborhood of a we can write h(z) = f(z)(z−a)m, and after filling in the removable singularity of h at a, we have h(a) ≠ 0. Let

Complex Analysis: #16 The Calculus of Residues equation pic 1

So this is a formula for the residue of a function with a pole at a.

A rather special case is the following. Let us assume that G ⊂ ℂ is a region, and g, h are both analytic functions defined on G. Assume that a ∈ G is a simple zero of h. (That is h(a) = 0, but h'(a) ≠ 0.) Assume furthermore that g(a) ≠ 0. Then let f = g/h. (Note that a function such as f, which is defined to be the ratio of two analytic functions, is called a rational function.) Therefore f is meromorphic in G. What is the residue of f at a? Writing g and h as power series around a, we have

Complex Analysis: #16 The Calculus of Residues equation pic 2

Of course, going in the other direction, if a is a zero of g and h(a) ≠ 0, then the residue of f at a is simply zero. This is trivial.


Theorem 35 (The Residue Theorem)
Let the function f be defined and analytic throughout the region G ⊂ ℂ, except perhaps for a set S ⊂ G of isolated, not removable singularities. Let Ω be a cycle in G which avoids all these singularities and which is such that the winding number of Ω around all points of the compliment of G is zero. Then only finitely many points of S have non-vanishing index with respect to Ω and we have the residue formula

Complex Analysis: #16 The Calculus of Residues equation pic 3

Proof
Nothing is lost if we assume that Ω simply consists of a single closed path γ. So it is contained in a compact disc in ℂ which must contain all points of ℂ having a non-vanishing index with respect to γ. If there were infinitely many such points, then they must have an accumulation point, which must lie in the compliment of G. But such a point has index zero with respect to γ. Since that point does not lie on γ, it must have a neighborhood which contains only points with index zero with respect to γ. Thus we have a contradiction. The residue theorem now follows from Cauchy’s theorem (theorem 26).

1 comment:

If it's a past exam question, do not include links to the paper. Only the reference.
Comments will only be published after moderation

Currently Viewing: Physics Reference | Complex Analysis: #16 Residues Calculus