FOLLOW US ON TWITTER
SHARE THIS PAGE ON FACEBOOK, TWITTER, WHATSAPP ... USING THE BUTTONS ON THE LEFT


YOUR PARTICIPATION FOR THE GROWTH OF PHYSICS REFERENCE BLOG

Sunday, March 1, 2020

A binary star consists of two stars A and B that orbit one another, as illustrated in Fig. 1.1.


Question 8
A binary star consists of two stars A and B that orbit one another, as illustrated in Fig. 1.1.


Fig. 1.1

The stars are in circular orbits with the centres of both orbits at point P, a distance d from the centre of star A.

(a) (i) Explain why the centripetal force acting on both stars has the same magnitude. [2]

(ii) The period of the orbit of the stars about point P is 4.0 years.
Calculate the angular speed ω of the stars. [2]


(b) The separation of the centres of the stars is 2.8 × 108 km.
The mass of star A is MA. The mass of star B is MB.

The ratio MA/MB is 3.0.

(i) Determine the distance d. [3]

(ii) Use your answers in (a)(ii) and (b)(i) to determine the mass MB of star B.
Explain your working. [3]
 [Total: 10]





Reference: Past Exam Paper – June 2016 Paper 42 Q1





Solution:
(a) (i) The gravitational force provides the centripetal force. From Newton’s 3rd law, the forces have the same magnitude.

(ii)
{Period T = 4 years = (4.0 × 365 × 24 × 3600) seconds}
ω = 2π / T
ω = 2π / (4.0 × 365 × 24 × 3600)
ω = 5.0 (4.98) × 10–8 rad s–1


(b)
(i)
{Centripetal force = mrω2

The centripetal forces acting on the stars are equal in magnitude.

Centripetal force on star A = MA d ω2
Centripetal force on star B = MB (2.8×108 d) ω2 }

(centripetal force =) MA d ω2 = MB (2.8×108 d) ω2

{ MA d ω2 = MB (2.8×108 d) ω2
MA d = MB (2.8×108 d)
MA / MB = (2.8×108 d) / d
3.0 = (2.8×108 d) / d }

MA / MB = 3.0 = (2.8×108 d) / d

{3d = 2.8×108 d
3d + d = 2.8×108}

d = 7.0 × 107 km

(ii)
{The gravitational force provides the centripetal force.
Note that the separation should be in metres, not kilometres.

We want to find MB. So, we equate the gravitational force to the centripetal force on star A so that MA gets eliminated.

GMAMB / r2 = MA2

For the gravitational force, r is the separation of the stars.
For the centripetal force, d is the distance of star A from point P.}

GMAMB / (2.8×1011)2 = MA2
MB = (2.8 × 1011)2 × dω2 / G
MB= (2.8×1011)2 × (7.0×1010) × (4.98×10–8)2 / (6.67×10–11)            
MB= 2.0 × 1029 kg                  

No comments:

Post a Comment

If it's a past exam question, do not include links to the paper. Only the reference.
Comments will only be published after moderation

Currently Viewing: Physics Reference | A binary star consists of two stars A and B that orbit one another, as illustrated in Fig. 1.1.