Question 13
(a)
Define magnetic flux density. [3]
(b)
A stiff copper wire is balanced horizontally on a pivot, as shown in
Fig. 8.1.
Fig. 8.1
Sections PQ, QR and RS
of the wire are situated in a uniform magnetic field of flux density B
produced between the poles of a permanent magnet.
The perpendicular
distance of PQRS from the pivot is 7.5 cm.
When a current of 2.7
A is passed through the wire, a small mass of 45 mg is placed a distance 8.8 cm
from the pivot in order to restore the balance of the wire, as shown in Fig.
8.2.
Fig. 8.2
(i)
Explain why, when the current is switched on, the current in the
sections PQ and RS of the wire does not affect the balance of the wire. [2]
(ii)
The length of section QR of the wire is 1.2 cm.
Calculate the magnetic
flux density B. [3]
[Total: 8]
Reference: Past Exam Paper – November 2018 Paper 42 Q8
Solution:
(a)
Magnetic flux density is the force per current per unit
length of a wire (conductor) when the current (in the wire / conductor) is at
right angles to the magnetic field.
(b)
(i)
The forces (on PQ and RS) are horizontal.
Hence they create no moment about the pivot.
{The
wire is balance when the clockwise moment on it is equal to the anticlockwise
moment.
Moment
= force × perpendicular distance from line
of action of force to pivot
In this
case, the forces are horizontal – there is not PERPENDICULAR distance. So, the forces
do not create any moment.}
(ii)
need to apply moments
{From
the principle of moments,
Moment
due to the force on QR about the pivot = Moment due to the weight of the mass
of 45 mg
(BIL)
× x = (mg) × y
where x = 7.5 cm (perpendicular
distance of the force BIL from the pivot)
y = 8.8 cm (perpendicular distance of the weight
from the pivot)}
L = 1.2 cm = 1.2×10‑2 m
m = 45 mg = 45×10-6 kg
BILx = mgy
B × 2.7 × 1.2×10‑2 × 7.5 = 45×10-6 × 9.81 × 8.8
B = 1.6 × 10-2 T
No comments:
Post a Comment
If it's a past exam question, do not include links to the paper. Only the reference.
Comments will only be published after moderation